Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(6)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319732

RESUMO

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Camundongos , Animais , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Serina-Treonina Quinases TOR/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Glucose , Metformina/farmacologia , Microambiente Tumoral
3.
Front Reprod Health ; 5: 1081092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113812

RESUMO

Uterine fibroids are exceedingly common benign tumours of the female reproductive system and cause severe symptoms, including acute pain, bleeding, and infertility. Fibroids are frequently associated with genetic alterations affecting mediator complex subunit 12 (MED12), fumarate hydratase (FH), high mobility group AT-hook 2 (HMGA2) and collagen, type IV alpha 5 and alpha 6 (COL4A5-COL4A6). Recently, we reported MED12 exon 2 mutations in 39 out of 65 uterine fibroids (60%) from 14 Australian patients. The aim of this study was to evaluate the status of FH mutations in MED12 mutation-positive and mutation-negative uterine fibroids. FH mutation screening of altogether 65 uterine fibroids and corresponding adjacent normal myometrium (n = 14) was carried out by Sanger sequencing. Three out of 14 patients displayed somatic mutations in FH exon 1 in addition to harbouring MED12 mutation in uterine fibroids. This study is the first to report that the mutations in MED12 and FH co-exist in uterine fibroids of Australian women.

4.
Front Oncol ; 13: 1081110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969070

RESUMO

Testicular cancer is a common malignancy of young males and is believed to be originated from defective embryonic or adult germ cells. Liver kinase B1 (LKB1) is a serine/threonine kinase and a tumor suppressor gene. LKB1 is a negative regulator of the mammalian target of rapamycin (mTOR) pathway, often inactivated in many human cancer types. In this study, we investigated the involvement of LKB1 in the pathogenesis of testicular germ cell cancer. We performed immunodetection of LKB1 protein in human seminoma samples. A 3D culture model of human seminoma was developed from TCam-2 cells, and two mTOR inhibitors were tested for their efficacy against these cancer cells. Western blot and mTOR protein arrays were used to show that these inhibitors specifically target the mTOR pathway. Examination of LKB1 showed reduced expression in germ cell neoplasia in situ lesions and seminoma compared to adjacent normal-appearing seminiferous tubules where the expression of this protein was present in the majority of germ cell types. We developed a 3D culture model of seminoma using TCam-2 cells, which also showed reduced levels of LKB1 protein. Treatment of TCam-2 cells in 3D with two well-known mTOR inhibitors resulted in reduced proliferation and survival of TCam-2 cells. Overall, our results support that downregulation or loss of LKB1 marks the early stages of the pathogenesis of seminoma, and the suppression of downstream signaling to LKB1 might be an effective therapeutic strategy against this cancer type.

5.
J Low Genit Tract Dis ; 27(2): 146-151, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622249

RESUMO

OBJECTIVE: The histopathologic diagnostic criteria of differentiated vulvar intraepithelial neoplasia (dVIN), the precursor of human papillomavirus-independent squamous cell carcinoma, are basal atypia, a negative or non-block-positive p16, and a supportive p53 immunohistochemistry (IHC). Several different patterns of supportive p53 IHC have been described. This study aims to determine the relationship between p53 IHC patterns and mass spectrometry analysis of cellular proteins in dVIN. METHODS: Four patterns of p53 IHC were studied: overexpression, cytoplasmic, wild type, and intermediate expression between wild type and overexpression. For each pattern, tissue samples of 4 examples were subjected to mass spectrometry. RESULTS: The protein profile within each p53 IHC pattern shared common features. Each of the 4 p53 patterns had a distinguishable protein profile when compared with the other 3 patterns. CONCLUSIONS: The distinguishable protein profiles in different p53 IHC patterns suggest diverse mechanisms of TP53 dysfunction. Subtyping dVIN by p53 IHC is worthy of further study because varied protein expression profiles may translate into different clinical behavior.


Assuntos
Carcinoma in Situ , Carcinoma de Células Escamosas , Lesões Intraepiteliais Escamosas , Neoplasias Vulvares , Feminino , Humanos , Carcinoma in Situ/patologia , Carcinoma de Células Escamosas/patologia , Espectrometria de Massas , Proteômica , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Vulvares/patologia
6.
Clin Proteomics ; 19(1): 48, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536316

RESUMO

Global high-throughput phosphoproteomic profiling is increasingly being applied to cancer specimens to identify the oncogenic signaling cascades responsible for promoting disease initiation and disease progression; pathways that are often invisible to genomics analysis. Hence, phosphoproteomic profiling has enormous potential to inform and improve individualized anti-cancer treatment strategies. However, to achieve the adequate phosphoproteomic depth and coverage necessary to identify the activated, and hence, targetable kinases responsible for driving oncogenic signaling pathways, affinity phosphopeptide enrichment techniques are required and often coupled with offline high-pressure liquid chromatographic (HPLC) separation prior to nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS). These complex and time-consuming procedures, limit the utility of phosphoproteomics for the analysis of individual cancer patient specimens in real-time, and restrict phosphoproteomics to specialized laboratories often outside of the clinical setting. To address these limitations, here we have optimized a new protocol, phospho-heavy-labeled-spiketide FAIMS Stepped-CV DDA (pHASED), that employs online phosphoproteome deconvolution using high-field asymmetric waveform ion mobility spectrometry (FAIMS) and internal phosphopeptide standards to provide accurate label-free quantitation (LFQ) data in real-time. Compared with traditional single-shot LFQ phosphoproteomics workflows, pHASED provided increased phosphoproteomic depth and coverage (phosphopeptides = 4617 pHASED, 2789 LFQ), whilst eliminating the variability associated with offline prefractionation. pHASED was optimized using tyrosine kinase inhibitor (sorafenib) resistant isogenic FLT3-mutant acute myeloid leukemia (AML) cell line models. Bioinformatic analysis identified differential activation of the serine/threonine protein kinase ataxia-telangiectasia mutated (ATM) pathway, responsible for sensing and repairing DNA damage in sorafenib-resistant AML cell line models, thereby uncovering a potential therapeutic opportunity. Herein, we have optimized a rapid, reproducible, and flexible protocol for the characterization of complex cancer phosphoproteomes in real-time, a step towards the implementation of phosphoproteomics in the clinic to aid in the selection of anti-cancer therapies for patients.

7.
Proc Natl Acad Sci U S A ; 119(44): e2208040119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279452

RESUMO

Organoid technology has provided unique insights into human organ development, function, and diseases. Patient-derived organoids are increasingly used for drug screening, modeling rare disorders, designing regenerative therapies, and understanding disease pathogenesis. However, the use of Matrigel to grow organoids represents a major challenge in the clinical translation of organoid technology. Matrigel is a poorly defined mixture of extracellular matrix proteins and growth factors extracted from the Engelbreth-Holm-Swarm mouse tumor. The extracellular matrix is a major driver of multiple cellular processes and differs significantly between tissues as well as in healthy and disease states of the same tissue. Therefore, we envisioned that the extracellular matrix derived from a native healthy tissue would be able to support organoid growth akin to organogenesis in vivo. Here, we have developed hydrogels from decellularized human and bovine endometrium. These hydrogels supported the growth of mouse and human endometrial organoids, which was comparable to Matrigel. Organoids grown in endometrial hydrogels were proteomically more similar to the native tissue than those cultured in Matrigel. Proteomic and Raman microspectroscopy analyses showed that the method of decellularization affects the biochemical composition of hydrogels and, subsequently, their ability to support organoid growth. The amount of laminin in hydrogels correlated with the number and shape of organoids. We also demonstrated the utility of endometrial hydrogels in developing solid scaffolds for supporting high-throughput, cell culture-based applications. In summary, endometrial hydrogels overcome a major limitation of organoid technology and greatly expand the applicability of organoids to understand endometrial biology and associated pathologies.


Assuntos
Neoplasias , Organoides , Feminino , Humanos , Bovinos , Animais , Organoides/metabolismo , Hidrogéis/química , Laminina/farmacologia , Laminina/metabolismo , Proteômica , Endométrio , Neoplasias/metabolismo
8.
Cell Rep Med ; 3(9): 100738, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36103879

RESUMO

Endometrial cancer is one of the most frequently diagnosed gynecological cancers worldwide, and its prevalence has increased by more than 50% over the last two decades. Despite the understanding of the major signaling pathways driving the growth and metastasis of endometrial cancer, clinical trials targeting these signals have reported poor outcomes. The heterogeneous nature of endometrial cancer is suspected to be one of the key reasons for the failure of targeted therapies. In this study, we perform a sequential window acquisition of all theoretical fragment ion spectra (SWATH)-based comparative proteomic analysis of 63 tumor biopsies collected from 20 patients and define differences in protein signature in multiple regions of the same tumor. We develop organoids from multiple biopsies collected from the same tumor and show that organoids capture heterogeneity in endometrial cancer growth. Overall, using quantitative proteomics and patient-derived organoids, we define the heterogeneous nature of endometrial cancer within a patient's tumor.


Assuntos
Neoplasias do Endométrio , Proteômica , Neoplasias do Endométrio/tratamento farmacológico , Feminino , Humanos , Organoides/patologia
9.
Proteomics ; 22(1-2): e2100063, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648240

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive, nerve-associated tumors and the main cause of death amongst neurofibromatosis type I (NF1) patients. Schwann cells (SCs) are the pathogenic cell type in MPNST, however the secretome of human MPNST -derived SCs is poorly defined. In this study, a comprehensive proteomic analysis of the proteins secreted by the sNF96.2 human SC line, derived from a patient with MPNST, was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 17,354 unique peptides corresponding to 1538 individual proteins were identified. Among them, 995 proteins were confirmed as secreted using various bioinformatics tools including SignalP, SecretomeP, Vertebrate Secretome Database (VerSeDa), and Ingenuity Pathway Analysis (IPA). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were conducted to assign protein localization and function, and to define enriched pathways. Protein binding was the most enriched molecular function, and the most enriched biological process was cell-cell adhesion. Metabolic pathways showed the highest levels of enrichment. In addition, 13 of the identified proteins were validated in Western blotting. This comprehensive secretome map constitutes a reference library providing a new molecular insight into MPNST.


Assuntos
Neoplasias de Bainha Neural , Neurofibrossarcoma , Linhagem Celular Tumoral , Cromatografia Líquida , Humanos , Proteômica , Células de Schwann , Secretoma , Espectrometria de Massas em Tandem
10.
Membranes (Basel) ; 11(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34832109

RESUMO

Breast cancer is the leading cause of cancer death in women. The majority of these deaths are due to disease metastasis, in which cancer cells disseminate to multiple organs and disrupt vital physiological functions. It is widely accepted that breast cancer cells secrete extracellular vesicles (EVs), which contain dynamic molecular cargo that act as versatile mediators of intercellular communication. Therefore, Evs. secreted by breast cancer cells could be involved in the development of metastatic disease and resistance to treatment. Moreover, changes in EV cargo could reflect the effects of therapy on their parent tumor cells. The aim of this feasibility study was to quantitatively profile the proteomes of Evs. isolated from blood samples taken from treatment sensitive and resistant metastatic breast cancer patients to identify proteins associated with responses. Three serial blood samples were collected from three patients with metastatic breast cancer receiving systemic therapy including a responder, a non-responder, and a mixed-responder. Evs. were isolated from plasma using size exclusion chromatography and their protein cargo was prepared for tandem mass tag (TMT)-labelling and quantitative analyses using two-dimensional high-performance liquid chromatography followed by tandem mass spectrometry. After filtering, we quantitatively identified 286 proteins with high confidence using a q value of 0.05. Of these, 149 were classified as EV associated candidate proteins and 137 as classical, high abundant plasma proteins. After comparing EV protein abundance between the responder and non-responder, we identified 35 proteins with unique de-regulated abundance patterns that was conserved at multiple time points. We propose that this proof-of-concept approach can be used to identify proteins which have potential as predictors of metastatic breast cancer response to treatment.

11.
Respirology ; 26(10): 960-973, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34224176

RESUMO

BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is the third leading cause of illness and death worldwide. Current treatments aim to control symptoms with none able to reverse disease or stop its progression. We explored the major molecular changes in COPD pathogenesis. METHODS: We employed quantitative label-based proteomics to map the changes in the lung tissue proteome of cigarette smoke-induced experimental COPD that is induced over 8 weeks and progresses over 12 weeks. RESULTS: Quantification of 7324 proteins enabled the tracking of changes to the proteome. Alterations in protein expression profiles occurred in the induction phase, with 18 and 16 protein changes at 4- and 6-week time points, compared to age-matched controls, respectively. Strikingly, 269 proteins had altered expression after 8 weeks when the hallmark pathological features of human COPD emerge, but this dropped to 27 changes at 12 weeks with disease progression. Differentially expressed proteins were validated using other mouse and human COPD bronchial biopsy samples. Major changes in RNA biosynthesis (heterogeneous nuclear ribonucleoproteins C1/C2 [HNRNPC] and RNA-binding protein Musashi homologue 2 [MSI2]) and modulators of inflammatory responses (S100A1) were notable. Mitochondrial dysfunction and changes in oxidative stress proteins also occurred. CONCLUSION: We provide a detailed proteomic profile, identifying proteins associated with the pathogenesis and disease progression of COPD establishing a platform to develop effective new treatment strategies.


Assuntos
Proteômica , Doença Pulmonar Obstrutiva Crônica , Animais , Modelos Animais de Doenças , Pulmão , Camundongos , Doença Pulmonar Obstrutiva Crônica/etiologia , Fumaça/efeitos adversos , Fumar/efeitos adversos
12.
Nat Commun ; 11(1): 4980, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020477

RESUMO

The functions of the proto-oncoprotein c-Myc and the tumor suppressor p53 in controlling cell survival and proliferation are inextricably linked as "Yin and Yang" partners in normal cells to maintain tissue homeostasis: c-Myc induces the expression of ARF tumor suppressor (p14ARF in human and p19ARF in mouse) that binds to and inhibits mouse double minute 2 homolog (MDM2) leading to p53 activation, whereas p53 suppresses c-Myc through a combination of mechanisms involving transcriptional inactivation and microRNA-mediated repression. Nonetheless, the regulatory interactions between c-Myc and p53 are not retained by cancer cells as is evident from the often-imbalanced expression of c-Myc over wildtype p53. Although p53 repression in cancer cells is frequently associated with the loss of ARF, we disclose here an alternate mechanism whereby c-Myc inactivates p53 through the actions of the c-Myc-Inducible Long noncoding RNA Inactivating P53 (MILIP). MILIP functions to promote p53 polyubiquitination and turnover by reducing p53 SUMOylation through suppressing tripartite-motif family-like 2 (TRIML2). MILIP upregulation is observed amongst diverse cancer types and is shown to support cell survival, division and tumourigenicity. Thus our results uncover an inhibitory axis targeting p53 through a pan-cancer expressed RNA accomplice that links c-Myc to suppression of p53.


Assuntos
Neoplasias/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Carcinogênese , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , Sumoilação , Proteína Supressora de Tumor p53/genética , Ubiquitinação
13.
Front Oncol ; 10: 1601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984024

RESUMO

Schwann cells (SCs), the glial component of peripheral nerves, have been identified as promoters of pancreatic cancer (PC) progression, but the molecular mechanisms are unclear. In the present study, we aimed to identify proteins released by SCs that could stimulate PC growth and invasion. Proteomic analysis of human primary SC secretome was performed using liquid chromatography-tandem mass spectrometry, and a total of 13,796 unique peptides corresponding to 1,470 individual proteins were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Metabolic and cell-cell adhesion pathways showed the highest levels of enrichment, a finding in line with the supportive role of SCs in peripheral nerves. We identified seven SC-secreted proteins that were validated by western blot. The involvement of these SC-secreted proteins was further demonstrated by using blocking antibodies. PC cell proliferation and invasion induced by SC-conditioned media were decreased using blocking antibodies against the matrix metalloproteinase-2, cathepsin D, plasminogen activator inhibitor-1, and galectin-1. Blocking antibodies against the proteoglycan biglycan, galectin-3 binding protein, and tissue inhibitor of metalloproteinases-2 decreased only the proliferation but not the invasion of PC cells. Together, this study delineates the secretome of human SCs and identifies proteins that can stimulate PC cell growth and invasion and therefore constitute potential therapeutic targets.

14.
Cell Rep ; 30(5): 1463-1477.e7, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023462

RESUMO

The intact vaginal epithelium is essential for women's reproductive health and provides protection against HIV and sexually transmitted infections. How this epithelium maintains itself remains poorly understood. Here, we used single-cell RNA sequencing (RNA-seq) to define the diverse cell populations in the vaginal epithelium. We show that vaginal epithelial cell proliferation is limited to the basal compartment without any obvious label-retaining cells. Furthermore, we developed vaginal organoids and show that the basal cells have increased organoid forming efficiency. Importantly, Axin2 marks a self-renewing subpopulation of basal cells that gives rise to differentiated cells over time. These cells are ovariectomy-resistant stem cells as they proliferate even in the absence of hormones. Upon hormone supplementation, these cells expand and reconstitute the entire vaginal epithelium. Wnt/ß-catenin is essential for the proliferation and differentiation of vaginal stem cells. Together, these data define heterogeneity in vaginal epithelium and identify vaginal epithelial stem cells.


Assuntos
Linhagem da Célula , Células Epiteliais/citologia , Hormônios/metabolismo , Células-Tronco/citologia , Vagina/citologia , Proteínas Wnt/metabolismo , Animais , Proteína Axina/metabolismo , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Feminino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Organoides/citologia , RNA-Seq , Regeneração , Células-Tronco/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
15.
Reprod Sci ; 26(4): 476-486, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29730954

RESUMO

Uterine leiomyomas (fibroids) are the most common gynecological tumors, which are enriched in the extracellular matrix (ECM). Fibroids are leading cause of abnormal uterine bleeding and hysterectomy. One of the major questions yet to be answered is the overproduction of specific ECM components in human uterine fibroids, particularly in relation to mutations in the driver gene mediator complex subunit 12 ( MED12). Surgical specimens from 14 patients with uterine leiomyoma having fibroids and corresponding adjacent normal myometrium (ANM) were utilized to analyze genetic and proteomic expression patterns in the tissue samples. MED12 mutations in the fibroids were screened by Sanger sequencing. iTRAQ was used to label the peptides in small-, medium-, and large-sized fibroid samples of annotated MED12 mutation from the same patient. The mixtures of the peptides were fractionated by hydrophilic interaction liquid chromatography (HILIC) and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the differential expression proteins. Using isobaric tagged-based quantitative mass spectrometry on 3 selected patients, ECM-related protein tenascin-C (TNC) was observed significantly upregulated (>1.5-fold) with a confidence corresponding to false discovery rate (FDR) <1% in small-, medium-, and large-sized fibroid samples regardless of MED12 mutation status. The TNC was validated on additional patient samples using Western blotting (WB) and immunohistochemistry (IHC) and confirmed significant overexpression of this protein in fibroids compared to matched ANM. Proteomic analyses have identified the increased ECM protein expression, TNC, as a hallmark of uterine fibroids regardless of MED12 mutations. Further functional studies focusing on the upregulated ECM proteins in leiomyogenesis will lead to the identification of novel ECM drug targets for fibroid treatment.


Assuntos
Leiomioma/metabolismo , Tenascina/metabolismo , Neoplasias Uterinas/metabolismo , Feminino , Humanos , Leiomioma/genética , Complexo Mediador/genética , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , Proteômica , Regulação para Cima , Neoplasias Uterinas/genética
16.
Carcinogenesis ; 39(9): 1105-1116, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-29912292

RESUMO

Unopposed oestrogen is responsible for approximately 80% of all the endometrial cancers. The relationship between unopposed oestrogen and endometrial cancer was indicated by the increase in the number of endometrial cancer cases due to the widespread use of oestrogen replacement therapy. Approximately 30% of the endometrial cancer patients have mutations in the Wnt signalling pathway. How the unbalanced ratios of ovarian hormones and the mutations in Wnt signalling pathway interact to cause endometrial cancer is currently unclear. To study this, we have developed a uterine epithelial cell-specific inducible cre mouse model and used 3D in vitro culture of human endometrial cancer cell lines. We showed that activating mutations in the Wnt signalling pathway for a prolonged period leads to endometrial hyperplasia but not endometrial cancer. Interestingly, unopposed oestrogen and activating mutations in Wnt signalling together drive the progression of endometrial hyperplasia to endometrial cancer. We have provided evidence that progesterone can be used as a targeted therapy against endometrial cancer cases presented with the activating mutations in Wnt signalling pathway.


Assuntos
Hiperplasia Endometrial/patologia , Neoplasias do Endométrio/genética , Endométrio/patologia , Estradiol/farmacologia , Estrogênios/metabolismo , Progesterona/uso terapêutico , Via de Sinalização Wnt/genética , beta Catenina/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Hiperplasia Endometrial/genética , Neoplasias do Endométrio/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Endocrinology ; 159(7): 2656-2669, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788081

RESUMO

Uterine leiomyomas (fibroids) are the most common benign tumors that are associated with increased production of extracellular matrix (ECM). Excessive ECM deposition plays a major role in the enlargement and stiffness of these tumors and contributes to clinical symptoms, such as abnormal bleeding and abdominal pain. However, no study so far has explored the global composition of the ECM of fibroids and normal myometrium. In this study, we performed a systematic ECM enrichment procedure and comparative proteomic analyses to profile the ECM composition of genetically annotated different-sized fibroids (small, medium, and large) and adjacent normal myometrium (ANM). Our matrisome analysis identified a combined total of 108, 126, 126, and 130 unique ECM and ECM-associated proteins with a confidence corresponding to a false discovery rate <1% in ANM and in small, medium, and large fibroids, respectively. The majority of fibroid ECM proteins belong to the core matrisome that includes glycoproteins, collagens, and proteoglycans. Considering that the small-sized fibroids represent the initial stages of leiomyogenesis, we highlighted some of the most abundant and important upregulated ECM proteins in small fibroids (i.e., POSTN, TNC, COL3A1, COL24A1, and ASPN). Furthermore, we revealed 30 unique ECM proteins that exist only in fibroids but that are not present in ANM regardless of MED12 mutation. We propose that some of the proteins identified represent potential novel ECM drug targets that may change the paradigm of fibroid treatment.


Assuntos
Proteínas da Matriz Extracelular , Matriz Extracelular/metabolismo , Leiomioma/metabolismo , Proteoma , Western Blotting , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Espectrometria de Massas , Complexo Mediador/genética , Complexo Mediador/metabolismo , Pessoa de Meia-Idade , Mutação/genética , Miométrio/metabolismo , Ligação Proteica , Proteômica
18.
Reproduction ; 155(1): 61-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29066531

RESUMO

Recent studies showed that genetic aberrations in the MED12 gene, probably through the canonical WNT/ß-catenin pathway, lead to the pathogenesis of uterine fibroids. However, a comprehensive analysis of the WNT pathway in MED12-mutated and MED12-wild-type fibroids has not been performed. The objective of this study was to determine the status of the WNT pathway in human fibroids. We performed Sanger sequencing to define the MED12 mutational status of fibroids and normal myometrium samples. qPCR arrays were carried out to determine the status of the WNT signaling pathway in MED12-mutated and MED12-wild-type fibroids. Liquid chromatography-mass spectrometry (LC-MS), Western blotting and immunohistochemistry were used to monitor the expression of ß-catenin. We showed that ß-catenin expression was increased in fibroids compared to the adjacent myometrium samples. However, ß-catenin expression showed no correlation with MED12 mutation status. Of all the WNT signaling components, WNT inhibitors showed the greatest differences in expression between fibroids and controls. WIF1, a WNT inhibitor, was identified as the most significantly upregulated gene in fibroids. We cultured primary fibroid cells on hydrogels of known stiffness to decipher the influence of biomechanical cues on ß-catenin expression and revealed increased levels of ß-catenin when cells were cultured on a stiffer surface. In conclusion, our data showed that ß-catenin expression in fibroids occurs independently of MED12 mutations. Biomechanical changes upregulate ß-catenin expression in fibroids, providing an attractive avenue for developing new treatments for this disease.


Assuntos
Matriz Extracelular/metabolismo , Leiomioma/patologia , Mutação , Miométrio/patologia , Neoplasias Uterinas/patologia , beta Catenina/metabolismo , Células Cultivadas , Feminino , Humanos , Leiomioma/genética , Leiomioma/metabolismo , Complexo Mediador/genética , Miométrio/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Via de Sinalização Wnt , beta Catenina/genética
19.
Endocrinology ; 159(2): 1106-1118, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29244110

RESUMO

The central characteristic of uterine fibroids is excessive deposition of extracellular matrix (ECM), which contributes to fibroid growth and bulk-type symptoms. Despite this, very little is known about patterns of ECM protein expression in fibroids and whether these are influenced by the most common genetic anomalies, which relate to MED12. We performed extensive genetic and proteomic analyses of clinically annotated fibroids and adjacent normal myometrium to identify the composition and expression patterns of ECM proteins in MED12 mutation-positive and mutation-negative uterine fibroids. Genetic sequencing of tissue samples revealed MED12 alterations in 39 of 65 fibroids (60%) from 14 patients. Using isobaric tagged-based quantitative mass spectrometry on three selected patients (n = 9 fibroids), we observed a common set of upregulated (>1.5-fold) and downregulated (<0.66-fold) proteins in small, medium, and large fibroid samples of annotated MED12 status. These two sets of upregulated and downregulated proteins were the same in all patients, regardless of variations in fibroid size and MED12 status. We then focused on one of the significant upregulated ECM proteins and confirmed the differential expression of periostin using western blotting and immunohistochemical analysis. Our study defined the proteome of uterine fibroids and identified that increased ECM protein expression, in particular periostin, is a hallmark of uterine fibroids regardless of MED12 mutation status. This study sets the foundation for further investigations to analyze the mechanisms regulating ECM overexpression and the functional role of upregulated ECM proteins in leiomyogenesis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Leiomioma/metabolismo , Proteoma/análise , Neoplasias Uterinas/metabolismo , Adulto , Idoso , Moléculas de Adesão Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Leiomioma/genética , Pessoa de Meia-Idade , Miométrio/metabolismo , Proteoma/metabolismo , Proteômica , Neoplasias Uterinas/genética
20.
Mol Cell Proteomics ; 13(12): 3286-93, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25118247

RESUMO

Oligosaccharyltransferase is a multiprotein complex that catalyzes asparagine-linked glycosylation of diverse proteins. Using yeast genetics and glycoproteomics, we found that transient interactions between nascent polypeptide and Ost3p/Ost6p, homologous subunits of oligosaccharyltransferase, were able to modulate glycosylation efficiency in a site-specific manner in vivo. These interactions were driven by hydrophobic and electrostatic complementarity between amino acids in the peptide-binding groove of Ost3p/Ost6p and the sequestered stretch of substrate polypeptide. Based on this dependence, we used in vivo scanning mutagenesis and in vitro biochemistry to map the precise interactions that affect site-specific glycosylation efficiency. We conclude that transient binding of substrate polypeptide by Ost3p/Ost6p increases glycosylation efficiency at asparagines proximal and C-terminal to sequestered sequences. We detail a novel mode of interaction between translocating nascent polypeptide and oligosaccharyltransferase in which binding to Ost3p/Ost6p segregates a short flexible loop of glycosylation-competent polypeptide substrate that is delivered to the oligosaccharyltransferase active site for efficient modification.


Assuntos
Asparagina/metabolismo , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Asparagina/química , Domínio Catalítico , Expressão Gênica , Glicosilação , Hexosiltransferases/química , Hexosiltransferases/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mapeamento de Peptídeos , Ligação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Eletricidade Estática , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA